Comparison of Hierarchical Agglomerative Algorithms for Clustering Medical Documents
نویسندگان
چکیده
منابع مشابه
Comparison of Hierarchical Agglomerative Algorithms for Clustering Medical Documents
Extensive amount of data stored in medical documents require developing methods that help users to find what they are looking for effectively by organizing large amounts of information into a small number of meaningful clusters. The produced clusters contain groups of objects which are more similar to each other than to the members of any other group. Thus, the aim of high-quality document clus...
متن کاملA Comparison of Agglomerative Hierarchical Algorithms for Modularity Clustering
Modularity is a popular measure for the quality of a cluster partition. Primarily, its popularity originates from its suitability for community identification through maximization. A lot of algorithms to maximize modularity have been proposed in recent years. Especially agglomerative hierarchical algorithms showed to be fast and find clusterings with high modularity. In this paper we present se...
متن کاملModern hierarchical, agglomerative clustering algorithms
This paper presents algorithms for hierarchical, agglomerative clustering which perform most efficiently in the general-purpose setup that is given in modern standard software. Requirements are: (1) the input data is given by pairwise dissimilarities between data points, but extensions to vector data are also discussed (2) the output is a “stepwise dendrogram”, a data structure which is shared ...
متن کامل2 Review of Agglomerative Hierarchical Clustering Algorithms
Hierarchical methods are well known clustering technique that can be potentially very useful for various data mining tasks. A hierarchical clustering scheme produces a sequence of clusterings in which each clustering is nested into the next clustering in the sequence. Since hierarchical clustering is a greedy search algorithm based on a local search, the merging decision made early in the agglo...
متن کاملFuzzification of Agglomerative Hierarchical Crisp Clustering Algorithms
User generated content from fora, weblogs and other social networks is a very fast growing data source in which different information extraction algorithms can provide a convenient data access. Hierarchical clustering algorithms are used to provide topics covered in this data on different levels of abstraction. During the last years, there has been some research using hierarchical fuzzy algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Software Engineering & Applications
سال: 2012
ISSN: 0976-2221
DOI: 10.5121/ijsea.2012.3301